
22 The Delphi Magazine Issue 60

Dear Sir Or Madam
Julian responds to readers’ emails

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Writing a monthly column
seems a simple job, but for

me it’s a schizophrenic occupa-
tion. Sometimes the text and code
flow like magic: it’s like driving a
Volvo 1800S in the back lanes of the
Cotswolds. At other times you
have the handbrake on and black
smoke billowing out of the back. In
the former case everything seems
heaven-sent: the description and
implementation come together
beautifully and I get a terse ‘Reads
well’ from Our Esteemed Editor. In
the latter, it’s hard work, the dead-
line looms, Knuth is obtuse, the
code won’t work, my wife Donna
gives up and puts my dinner in the
oven. It’s with these articles I get
the dreaded readers’ emails: ‘X
won’t compile with $R+’, ‘You
haven’t explained Y very well and
I’ve no idea how to use it’, etc.

Writing can be fairly glamorous.
People come up to me at the
Borland Conference and want to
shake my hand and say that they
enjoy my articles; I get email saying
that I’ve saved their reputation
with their boss because they could
use the code in Algorithms Alfresco.
This latter kind of contact with my
readers is extremely gratifying,
because in the final reckoning the
main reason I write these articles is
to help other developers get their
jobs done.

No matter which type of email I
get, I always respond (sometimes
later rather than sooner), but I get
the feeling that I’m not helping
enough. By replying to a single
person that algorithm X is best
used in situation Y, by engaging in
an email correspondence about
the tricky aspects of data structure
Z with someone, I’m helping this
one developer, but the other read-
ers don’t get to participate in the
conversation.

This article, then, is a précis of
several readers’ emails, together
with my comments and enhanced
code. The disk this month contains
several bug-fixed and enhanced

Algorithms Alfresco units, so be pre-
pared to update your development
folders. If you have written to me in
the past after a particular article,
you may recognize your question
and my answer: if so, thank you for
emailing me. This way I get a feeling
for how well I’m doing and how
good the articles are for your
development needs.

Issue 57 (May 2000)
Hans: I guess I won’t be the only com-
plaining one but in listings 3 & 4 of
your article you’ve found quite a
nice way to get round the millen-
nium problem. I guess if you’d used
MOD instead of DIV the code might
even produce the results you were
looking for...

Ouch. Mea culpa. Hans was com-
pletely correct. The column con-
cerned was on performance. I’d
rushed off a couple of routines to
calculate the number of days in a
month, the first being pure code
with lots of if statements and the
second making use of an internal
table: the intent being to show that
the second was faster. For the
month of February the routines
had to calculate whether the year
concerned was leap or not. I used
DIV in the calculation instead of
MOD, thereby producing a nonsensi-
cal result. The test for a leap year
should be:

Leap := ((Year mod 4) = 0) and
(((Year mod 100) <> 0) or
((Year mod 400) = 0));

Issue 44 (April 1999)
Lasse: I thought I’d just let you know
of a better way to store the Huffman
tree in the compressed data stream,
at least better than the two methods
you discussed in the article. Instead
of storing the character counts you
should store the actual tree.

The column Lasse was talking
about discussed Huffman data
compression. The problem, if you
recall, is that you need to transmit
the Huffman tree with the encoded

data, since you can only decode
the data using the tree, and the
tree is unique to that particular
data distribution. I’d proposed two
possible ways of tacking on the
tree onto the compressed data.
The first (algorithm I) was to add a
256 longint table of character
counts. Using this information it is
possible for the decompressor to
build the tree in exactly the same
way that the compressor did. How-
ever, 256 longints is 1,024 bytes,
which seems excessive to add to a
compressed data file. My alterna-
tive plan (the one I used in the code
on the disk) was to output the
character counts ‘DFM-style’
(algorithm II). That is, if the count
were 255 or less, output a single
byte value to signify ‘the next value
you read is a single byte’, and then
output the count as a byte. If the
count were between 256 and
65,535 inclusive, output a single
byte value to read ‘the next value
you read will be a word (two
bytes)’ and then output the count
as a word. If the count were any
greater than that, output another
byte value, and then the count
value as a longint.

Lasse pointed out a much better
scheme, one that I hadn’t seen
before. It is succinct, very com-
pressed and very clever. The only
reason I output the character
counts was so that the
decompressor could rebuild the
Huffman tree. After that, there was
no need for the character counts.
Lasse argued that the compressor
should output the tree itself.

Recall that in a Huffman tree, the
nodes divide themselves into two
types: internal nodes, which



24 The Delphi Magazine Issue 60

always have two child nodes (be
they internal or external or both)
and which are empty (that is, they
contain no data), or external nodes
that hold a single character (and,
of course, by definition these have
no children). So the plan is to tra-
verse the tree, visiting the nodes
one by one; we output a single bit
to say whether a node is internal or
not and, if external, the character
in that node. The routine is recur-
sive, but, since the tree is bounded
(there are at most 256 external
nodes and hence 255 internal
nodes, and the maximum path
from root to leaf is 256 links), we
shan’t be in any danger of blowing
the program stack.

Suppose we have a routine
called WriteNode and we pass a
node to it as a parameter (we start
off the process by passing the root
node, of course). If the node
passed in is external, write a set bit
to the bitstream and then write the
character in that node as 8 bits. If
the node passed in is internal,
write a clear bit to the bitstream.
Next, if the node is internal, make a
recursive call to WriteNode passing
the left child, and then a recursive
call to WriteNode again, this time
passing the right child. And that’s
all there is to it.

Of course, writing a tree is all
very fine and dandy, providing that
it is possible to read it again. We
write another recursive routine,
this time called ReadNode. This
routine reads a bit from the
bitstream. If the bit is set, we need
to create an external node, and
then read the character for that
node from the bitstream (8 bits). If
the bit is clear, it’s an internal

node. We recursively call ReadNode
for the left child (we assume
ReadNode returns the node it had to
create, so that we can make the
link), and then for the right child.

The algorithm for encoding the
tree encodes only the tree: a char-
acter that does not appear in the
uncompressed document will not
be in the tree and therefore will not
be encoded by the write routine.
Hence we can calculate exactly the
number of bits required to store
the tree. If the number of different
characters in the original docu-
ment were n (with a maximum of
256, of course), then the number of
external nodes is also n, occupying
9n bits, and the number of internal
nodes is n-1, occupying n-1 bits.
The total number of bits needed to
store the tree is therefore 10n-1.
For the worse case scenario, n is
256 and therefore the tree would
take 2,559 bits in the compressed
stream. 2,559 bits is 319 bytes with
7 bits left over. Compare that with
either 1,024 bytes in my algorithm
I, or a minimum of 512 bytes (every
character count is less than 255) to
a maximum of 1,280 bytes (every
count is greater than 65,535) with
algorithm II. A pretty good
improvement.

Listing 1 shows the WriteNode
and ReadNode routines for the
Huffman compression. The origi-
nal code used a preset array of
nodes for the Huffman tree, and the
individual nodes are represented
not by pointers but by indexes into
this array. This month’s disk has
the complete Huffman implemen-
tation with this improvement.

A further question might be
asked: can this algorithm be used
to store any binary tree? Well, with
some modifications, yes. In an
off-the-shelf binary tree (rather

than the custom, very specialized,
Huffman tree), a node can have no
children, a left child only, a right
child only, or both children, and a
node can contain its own data in
some form or other (a string, an
object, a record). This means that
we have 8 possible types of node: a
leaf with no data, a leaf with some
data, an internal node with a left
child and no data, an internal node
with a left child and data, and so
on. These possibilities can easily
be represented by a single byte as
an enumeration.

The plan is the same as before.
To store the entire tree we write a
recursive WriteNode routine, pass-
ing to it a node and the stream to
which the tree is to be written. We
start the whole process off by call-
ing WriteNode with the root of the
tree. The WriteNode routine works
out the type of node passed to it
(has it any data? which children
are present?) and writes out the
correct enumeration value to the
stream. If it has any, it then writes
out its data to the stream. Then, if
it has a left child, it recursively
calls WriteNode with this child. On
return from this call, if it has a right
child it recursively calls WriteNode
with this child.

With a general binary tree we’d
have to consider runaway
recursion, in other words that the
tree is so deep that we’d blow the
program stack. If we did have the
possibility of running across such
a tree, we would have to rewrite
the WriteNode routine to remove
recursion. However, this possibil-
ity is fairly remote, especially for a
tree that we’re attempting to store
in a stream, so leaving WriteNode as
a recursive routine is acceptable.

ReadNode, of course, is a recur-
sive function as before. On

procedure WriteNode(aStream : TOutputBitStream; aHTree :
PHuffmanTree; aNodeInx : integer);

begin
{for a leaf, write a 1 bit, followed by the character}
if (aNodeInx < 256) then begin
aStream.WriteBit(true);
aStream.WriteByte(aNodeInx);

end else begin
{for an internal node, write a 0 bit, then the left
subtree, then the right subtree}
aStream.WriteBit(false);
WriteNode(aStream,aHTree,aHTree^[aNodeInx].hnLeftInx);
WriteNode(aStream,aHTree,aHTree^[aNodeInx].hnRightInx);

end;
end;
function ReadNode(aStream : TInputBitStream; aHTree :
PHuffmanTree; var aMaxInx : integer) : integer;

var IsLeaf : boolean;
begin
{read next bit to determine which node we have to create}
IsLeaf := aStream.ReadBit;
{if is a leaf return its node index (ie the character)}
if IsLeaf then
Result := aStream.ReadByte

{if it's internal node, get the left and right subtrees}
else begin
inc(aMaxInx);
Result := aMaxInx;
aHTree^[Result].hnLeftInx :=
ReadNode(aStream, aHTree, aMaxInx);

aHTree^[Result].hnRightInx :=
ReadNode(aStream, aHTree, aMaxInx);

end;
end;

➤ Listing 1: WriteNode and
ReadNode for a Huffman tree.



26 The Delphi Magazine Issue 60

entering the routine we create a
node. We read the enumeration
value from the stream and this will
tell us how many children we have
of what kind, and whether we have
any data. If there is data to be read,
we read it. If we’re supposed to
have a left child, recursively call
the ReadNode routine; similarly for
the right child. We finally return
the node we created.

Knowing the readers I have, I’m
sure you could extend this to work
with a red-black tree. Using such a
self-balancing binary search tree, it
would not be strictly necessary to
store the tree as is: we just need to
store the data. On reading the
stream again, we could merely
insert each data item into a brand
new tree. We wouldn’t get exactly
the same tree, of course, but the
important ordering property
would still be satisfied. However,
this algorithm is an O(nlog(n))
operation, whereas, at the expense
of a single byte per node we could
turn it into an O(n) operation.

Issue 46 (June 1999)
John: I have a problem with your
RPN expression parsing routines,
relating to operators with the same
order of precedence. For example,
the expression ‘1-2+3’ gets parsed to
‘123+-’ which evaluates to -4. As ‘+’
and ‘-’ have the same precedence,
they should be evaluated in left to
right order, giving ‘12-3+’ instead,
evaluating to +2.

Oh boy, John really nailed me on
this one, good and proper. He’s

right, of course, and it’s my fault for
not testing enough. The article he
refers to is the one where I showed
how to parse an arithmetic expres-
sion into its reverse Polish nota-
tion form, which is extremely easy
to evaluate. Unfortunately, I didn’t
consider all the ramifications of
the parsing technique.

Let’s recap the procedure as I
originally outlined it, using John’s
example. Suppose we have two
stacks, one for numbers and one
for operators. We read the expres-
sion ‘1-2+3’ from left to right. Get
the ‘1’, push it on the number
stack. Get the ‘-’. We don’t know
what to do with this yet since we
don’t have the other operand, so
push it on the operator stack. Get
the ‘2’. We could now evaluate the
‘1-2’ but we’re not sure at this
moment whether the next operand
is of higher precedence or not (for
example, in the expression ‘1-2*3’),
in which case the operand belongs
to it rather than the ‘-’, so we push
it on the number stack to get it out
of the way. Get the ‘+’. The rule I
stated is: if you’ve got an operator
token, peek at the top of the opera-
tor stack. If it is of higher prece-
dence then the one we’ve just read,
you immediately form an RPN
expression with the top operator
and push that onto the number
stack. You continue with this pro-
cess until the top of the operator
stack is of lesser or equal prece-
dence, in which case you push the
operator just read. So, we peek at
the top item on the operator stack
to see if it has a higher precedence
than ‘+’. It doesn’t so we push it.
Get the ‘3’, and push it on the

number stack. At this point, we’ve
run out of expression and so we
start popping stuff off the stacks.
Pop the ‘+’. This requires two
operands, so pop them off (‘3’ then
‘2’) and form an RPN expression,
‘23+’ and push it onto the number
stack. Pop off the next operator, ‘-’,
which requires two operands
(‘23+’ and ‘1’) and form an RPN
expression, ‘123+-’. Bzzzt! Wrong,
and thank you for playing.

The obvious thing is that the
rule I formulated was wrong. What
it should have said is this. Get the
next token. If it is an operator, peek
at the top of the operator stack (if
there is anything on the stack, of
course!). If the operator there is of
greater or equal precedence, then
form an RPN expression with it and
as many operands as it needs and
push the result on the number
stack. Peek at the top of the opera-
tor stack again, and repeat the
same process if the operator has
equal or higher precedence. Con-
tinue like this until the stack either
empties, or the operator is of
lesser precedence. Using this new
rule, we indeed get the correct
answer of ‘12-3+’. Listing 2 shows
the revised expression-to-RPN
parser.

Issue 46 (June 1999)
John: Not so fast! Listing 4 in the
same article has a more serious
memory overread problem! You are
trying to read a complete number
or identifier and possibly managing
to read beyond the end of the
expression string.

[Sound effect: Head hitting desk
repeatedly] Er, yes, John, you are

procedure TaaExpressionParser.epFormRPNSubExpr(aOp : char;
aCharPos : PChar);

var
PrecOp   : integer;
PrecTop  : integer;
TempOp   : char;
Operand1 : string[255];
Operand2 : string[255];

begin
{this routine is called when the operator about to be
pushed, aOp, has a precedence lower than or equal to the
operator on top of the operator stack. We need to pop
off some operators and operands and form some RPN
expressions to push onto the operand stack, until the
operator stack is exhausted or the top operator has a
precedence value less than the given operator's
precedence value.}

PrecOp := epGetPrecedence(aOp);
PrecTop := epGetPrecedence(FOpStack.Examine);
while (PrecOp <= PrecTop) and (PrecTop > 1) do begin
TempOp := FOpStack.Pop;
if (TempOp = UnaryMinus) then begin
if (FStStack.Count = 0) then
epRaiseBadExpressionError(aCharPos);

Operand1 := FStStack.Pop + UnaryMinus;
FStStack.Push(Operand1);

end else begin
if (FStStack.Count < 2) then
epRaiseBadExpressionError(aCharPos);

Operand2 := FStStack.Pop;
Operand1 := FStStack.Pop + Operand2 + TempOp;
FStStack.Push(Operand1);

end;
if FOpStack.IsEmpty then
PrecOp := 0

else
PrecTop := epGetPrecedence(FOpStack.Examine);

end;
{if the given operator was a right parenthesis the top of
the operator stack *must* be a left parenthesis and we
should remove it}

if (aOp = ')') then begin
if FOpStack.IsEmpty or (FOpStack.Examine <> '(') then
epRaiseBadExpressionError(aCharPos);

FOpStack.Pop;
end;

end;

➤ Listing 2:
Expression-to-RPN parser.



August 2000 The Delphi Magazine 27

quite right again. The original code
had this as it tried to read a
complete number:

while Expr[i+1] in NumberSet
do begin
OperandSt :=
OperandSt + Expr[i+1];
inc(i);

end;

There should be a check in there to
make sure we don’t go off beyond
the end of the Expr string. If the
memory at the end of the string
happened to have ASCII digits in it,
the while loop could go on for quite
a while. Listing 3 has the debugged
RPN expression evaluator. (Please
let me extend many thanks to John
Leavey for bearing with me on this
quite atrocious bit of design and
coding.)

Issue 54 (February 2000)
Paulo: I read with interest your
article on encryption, but I found one
historical inaccuracy: The ENIGMA
machine was actually broken by a
group of Polish mathematicians in
the 1930s as described in The Code
Book by Simon Singh. It was only
because Rejewski showed that it
was possible to do it that the English
took on the task after that...

Paulo is absolutely correct. I
completely minimized the contri-
bution made by the Poles to the
cracking of the ENIGMA machine.
They cracked a simpler ENIGMA

machine in the 30s, leading the
British to assume that a more
complex ENIGMA was also
crackable and thereby going ahead
and trying to do it. The British
mathematicians also had some
good luck in that the German
operators were not loath to cut
corners in setting up the machine,
leading to a point of attack.

I haven’t read Singh’s cryptogra-
phy book that Paolo mentions, but
I did enjoy his earlier one on the
proving of Fermat’s Last Theorem
and if The Code Book is as good as
its predecessor, it must be a good
read.

Issue 42 (February 1999)
Martin: When working with linked
lists, for example, you define records
with pointers to them and then
allocate memory when you need a
new node. Why do you do
that, rather than define an object
class? With an object, the constituent
properties are already derefer-
enced, thus avoiding the ‘^’ that my
managers (here) hate to see. In my
ignorance, the use of object classes
seems to fit in more with the Delphi
OO model too. Am I missing some-
thing?

It’s all a matter of preference, I
suppose. Let’s take the double
linked list as an example. We have
to have nodes with both a forward
link and a backward link to other
nodes, and we must have data with
each node. As I see it, we have two
choices of how to implement this
linked list, as shown in the code
fragment below:

PNode = ^Tnode;
TNode = record
Next  : PNode;
Prior : PNode;
Data  : ..anything..

end;
TNode = class
Next  : TNode;
Prior : TNode;
Data  : ..anything..

end;

Now, if we were writing a linked list
from scratch just for the data we
wanted to put in it, there’s no real
difference between the two. The
class definition fits better into the
Delphi model if you like, that I
won’t argue.

Now look at it from a different
viewpoint: we want to write a reus-
able linked list class. A class we
can use all over the place for stor-
ing wildly different types of data.
Sometimes they’ll be objects, yes,
other times, they’ll be strings, yet
other times you’ll have some
record structure. In this case I
would argue that having the Next
and Prior references visible is det-
rimental to our use of the linked
list (‘Hey, I want to have a linked
list of TButtons. Are you saying I
must create a TButton descendant
that has Next and Prior references,
then add this descendant to the
component palette, and always
remember to use it? No way,
José’).

So, we agree that in this ‘reuse’
case we need to have the node
information separate from the
data information. The node will

function TaaExpressionParser.epGetValue : double;
var
DblStack : TaaFloatStack;
i        : integer;
Operand1, Operand2 : double;
Expr     : string[255];
OperandSt: string[255];

begin
if not FParsed then
epParseToRPN;

DblStack := TaaFloatStack.Create;
try
{read through the RPN expression and evaluate it}
Expr := FStStack.Examine;
i := 0;
while (i < length(Expr)) do begin
inc(i);
if (Expr[i] = ' ') then begin
if (Expr[i+1] in NumberSet) then begin
OperandSt := '';
while (i < length(Expr)) and
(Expr[i+1] in NumberSet) do begin
OperandSt := OperandSt + Expr[i+1];
inc(i);

end;
DblStack.Push(StrToFloat(OperandSt));

end else begin
OperandSt := '';

while (i < length(Expr)) and
(Expr[i+1] in IdentifierSet) do begin
OperandSt := OperandSt + Expr[i+1];
inc(i);

end;
DblStack.Push(FVarList.Value[OperandSt]);

end
end else begin
if Expr[i] = UnaryMinus then
DblStack.Push(-DblStack.Pop)

else begin
Operand2 := DblStack.Pop;
Operand1 := DblStack.Pop;
case Expr[i] of
'+' : DblStack.Push(Operand1 + Operand2);
'-' : DblStack.Push(Operand1 - Operand2);
'*' : DblStack.Push(Operand1 * Operand2);
'/' : DblStack.Push(Operand1 / Operand2);
'^' : DblStack.Push(Power(Operand1, Operand2));

end;{case}
end;

end;
end;
Result := DblStack.Pop;

finally
DblStack.Free;

end;
end;

➤ Listing 3:
Evaluating an RPN expression.



28 The Delphi Magazine Issue 60

have an opaque pointer to the data
(it could be a pointer to a record
structure, a string, or an object, we
don’t care). The node would have
to have the following information:

TNode = record or class
Next  : PNode or TNode;
Prior : PNode or TNode;
Data  : pointer;

end;

And then we could build up a reus-
able linked list class quite easily
without the user having to worry
about maintaining the Next and
Prior pointers, etc. So should it be
a class or a record, this node? It
doesn’t really matter at a concep-
tual level, but it does matter at an
efficiency level. If the node is a
record, we can allocate them in
blocks of a hundred or more and
use a node manager to dole them
out when needed. Objects will
have to be allocated individually
(there’s funky stuff going on during
the constructor). My tests have
shown that using a node manager
is about 4 times faster than single
node allocations from the heap.
Ergo, I use records.

Issue 51 (November 1999)
Alan: I enjoyed your article on float-
ing points and the alignment and
misalignment stuff. I thought you
might be interested in the following
quotation from Borland’s Danny
Thorpe: ‘Delphi 5’s alignment pad-
ding now supports 8 byte alignment
as well. Data types 8 bytes or larger
will be aligned to 8 byte boundaries.’

As soon as I received Alan’s
email, I checked it out for myself.
It’s true, Delphi 5 does align double
variables correctly, and as a result
applications that make heavy use
of floating point operations are 6%
to 10% faster. Hence, in Delphi 5,
you don’t have to worry too much
about misaligned double variables
since the compiler will take care of
most of it for you. This even
extends to local double variables:
Delphi 5’s compiler guarantees
that they will be 8-byte aligned for
maximum efficiency. The Extended
type does still suffer by compari-
son, of course: being 10 bytes long
just isn’t efficient.

Issue 50 (October 1999)
Dave: We want to use the red-black
tree, but we need to insert many,
many nodes as efficiently as possi-
ble. It is also very likely that the raw
data we insert will have duplicates.
If the data has already been inserted
into the tree, we need to retrieve the
data from the tree to update it, if not
then we need to merely insert the
data. Reading your article and the
code, it seems that you intended us
to do the following:

find the item
if found then
update the data

else
insert the item

The problem that I see is that the
insert operation performs a find
operation as well, in order to work
out where to put the item. So,
because we have many duplicates,
we are essentially reduced to per-
forming a find operation twice for
each insert. For several hundreds of
thousands of nodes, this duplicated
find time is likely to add up.

Dave’s reasoning is spot on the
money and was well investigated.
Insert has to do a find operation in
order to work out where to put the
new item. The find will fail, of
course, but it will fail exactly at the
point where the item should be
inserted, so we can’t do without it.
Of course, I was being very ‘pure’ in
my original design: a Find does a
search, whereas an Insert adds the
item to the tree. However, Dave’s
requirement is very common: try
and insert an item, but if it already
exists, return the original. (I had
essentially the same message from
someone else who was using
EZDSL’s hash table.)

So we need to enhance the origi-
nal binary search tree and the
red-black tree to perform this
InsertOrGet algorithm. To avoid
duplicating code I had to separate
out the balancing algorithm from
the red-black tree insertion algo-
rithm since it would now be called
from two different places. The
other changes are not that great
either. Listing 4 shows the new
InsertOrGet method for both the
binary search tree and the

red-black tree. It neatly
implements Dave’s requirement.

On Compiler Options
Man In Street: When I compile your
code with such-and-such a compiler
option it doesn’t compile or it raises
an exception when run.

This kind of question comes up
not only with my Algorithms
Alfresco columns but also every
now and then with TurboPower’s
libraries. The favorite compiler
options raised are {$R+} (range
checking) and {$Q+} (arithmetic
overflow checking), although I
once had to write a reasoned reply
to a customer that TurboPower
was not going to make sure that its
code would compile with {$X-}.

First things first, I recognize that
these people have a point. I’m not
going to dismiss them out of hand,
but I am going to try and explain
my reasoning for using the com-
piler options I do. I’m going to refer
to Delphi 5 exclusively, by the way.

Speaking personally, I divide up
the compiler options into two
camps: The Must-Not-Be-Changed
options, and the User-Can-Change-
If-Required options.

The first collection of options is,
in my view, cast in stone. It would
be perverse indeed to change any
of them. I always use short-cut
Booleans {$B+} and extended
syntax {$X+} (could you live with-
out proper PChars?), always dis-
able var string checking {$V-},
always raise exceptions for I/O
errors {$I+}. I used to use the $A
alignment compiler option, but
these days I prefer the control of
using packed records and organiz-
ing the alignment myself. Huge
strings {$H+} are de rigueur these
days. Assignable typed constants
{$J+} just shows my ancestry: I’m
sure I can code to avoid them, but
I’m stuck in my ways. I dislike the
typed @ operator option so I
always leave it as {$T-}.

The rest, I suppose you could
say, are up for grabs. Open string
parameters {$P+} are pretty use-
less these days with long strings.
Optimization {$O+}, stack frame
{$W+}, stack checking {$S+}, debug
info {$D+} and local symbols {$L+}
are basically debug versus release



August 2000 The Delphi Magazine 29

code options: they’re only there to
help debugging, and once the code
is fully tested they can be toggled.
And that leaves us with range
checking and arithmetic overflow
checking.

Range checking has admirable
reasons for existing: catch the
off-by-one errors, check for an
array index being out of bounds,
and so on. Great if you always
declare your arrays to be exactly
the right size. However, I find
myself using arrays that vary in
size: I declare a pointer-to-an-array
type and the array type itself is
deliberately made as large as pos-
sible. Not because I’m ever going to
declare a variable of that type, of
course, but so that I can dynami-
cally size a pointer to that type. If I
want 100 elements, I GetMem 100 ele-
ments. Range checking won’t help
me with this type of array. One of
the most useful types in Delphi’s
VCL is the PByteArray. Cast any
pointer to a PByteArray and sud-
denly you can read the memory the
pointer points to, byte by byte.
Range checking wouldn’t work
with this. Now, I agree that range
checking does have its place, don’t
get me wrong, but it is not the uni-
versal panacea many people
believe it to be. As a matter of
course I have it on all the time
during development, but I have not

had a range check error in months,
if not years. Memory overwrites
and overreads by the dozen in that
time of course, but range checking
didn’t catch them.

Arithmetic overflow checking? I
hate it, mainly because it’s not
implemented correctly. If I’m
manipulating bits in a byte, not
doing arithmetic at all, I get arith-
metic overflow errors. If I’m manip-
ulating bits in a longint in the same
manner, I don’t get overflow errors
at all. Go figure. (I’ve reported this
one as a bug: it’s inconsistent and I
wasn’t doing arithmetic, I was
bit-twiddling. Compression and
encryption can be very hard to do
without bit-twiddling. But I
digress.) But, I’m trying to keep it
on to see what errors it catches.
Apart from my bit-twiddling in
compression, zip so far.

Issue 53 (January 2000)
So who won?

Yes, indeed! Who? I’ve finally got
round to checking the entries for
my simulated annealing competi-
tion. I had five entries in all, of
which one, unfortunately, had to
be disqualified for using another
algorithm entirely.

The entrants were: Lars Hjelmi
(who managed to get me a solution
before I even received my copy
of that issue of The Delphi
Magazine!), Franz-Leo Chomse
(close on his heels, and who said
that he’d managed to code it so

quickly because he was waiting for
a new version of TurboPower’s
FlashFiler), Sergey Kostinsky (who
produced a non-annealing version
that was very fast), Gert Kello (who
gave me a well done GUI applica-
tion with several options to try
out), and Gavin Clements (who
gave me one program and then, a
couple of weeks later, a faster one).

Franz-Leo approached the prob-
lem as a knapsack. His approach,
basically, was to find every single
word in every possible combina-
tion in the letter matrix, and then
to stuff the knapsack. He maxi-
mized the count of the number of
words. Unfortunately, that meant
that a word could be duplicated
and indeed the final solution (16
words) had four separate TOs and
LAZYs. Rereading my instructions,
I didn’t expressly discount this
possibility.

Onto Lars. He approached it the
same way (precalculating all the
possible word paths) and maxi-
mizing the number of words in a
knapsack. The app allowed you to
control the number of iterations
and whether to accept duplicate
words. 15 words in a fast time.

Sergey’s app, although dis-
counted because he didn’t use sim-
ulated annealing, was very fast.
Unfortunately, the best answer it
came up with only had six words.

Gert’s solution was a nicely writ-
ten GUI app, with lots of options to
try out (including an About box!).

function TaaBinarySearchTree.bstInsertPrim(aItem : pointer;
var aExists : boolean; var aUseLeft : boolean) :
PaaBTNode;

begin
{first, attempt to find the item; if found, return it}
if bstFindItem(aItem, Result, aUseLeft) then
aExists := true

else begin
{otherwise, this returns a node, so insert there}
aExists := false;
Result := FBinTree.InsertAt(Result, aUseLeft, aItem);
inc(FCount);

end;
end;
procedure TaaBinarySearchTree.Insert(aItem : pointer);
var
UseLeft, WasFound : boolean;

begin
bstInsertPrim(aItem, WasFound, UseLeft);
if WasFound then
raise Exception.Create('TaaBinarySearchTree.Insert: ‘+
‘duplicate keys not allowed');

end;
function TaaBinarySearchTree.InsertOrGet(aItem : pointer;
var aCurItem : pointer) : boolean;

var
UseLeft, WasFound : boolean;
Node     : PaaBTNode;

begin
Node := bstInsertPrim(aItem, WasFound, UseLeft);
Result := not WasFound;

aCurItem := Node^.btData;
end;
procedure TaaRedBlackTree.Insert(aItem : pointer);
var
Node     : PaaBTNode;
WasFound, UseLeft  : boolean;

begin
{insert the new item, get back the node that was inserted
and its relationship to its parent}

Node := bstInsertPrim(aItem, WasFound, UseLeft);
if WasFound then
raise Exception.Create('TaaRedBlackTree.Insert: ‘+
‘duplicate keys not allowed');

{balance the tree}
rbtBalanceAfterInsert(Node);

end;
function TaaRedBlackTree.InsertOrGet(aItem : pointer;
var aCurItem : pointer) : boolean;

var
Node     : PaaBTNode;
WasFound, UseLeft  : boolean;

begin
{insert the new item, get back the node that was inserted
and its relationship to its parent}

Node := bstInsertPrim(aItem, WasFound, UseLeft);
aCurItem := Node^.btData;
Result := not WasFound;
{balance the tree, if inserted}
if Result then
rbtBalanceAfterInsert(Node);

end;

➤ Listing 4: Insert or Get with a
binary search tree.



30 The Delphi Magazine Issue 60

Also a great class hierarchy, and
well designed. Another maximize
the wordcount solution. And it was
very good at solving too: it pro-
duced 15 words at the drop of a
hat, a slightly different set to Lars
though.

Talking of nice GUI apps, Gavin’s
solution was a well-worked exam-
ple. However, he decided to search
for any word in the WORD.LST file
that I supplied with the December
1999 issue, rather than the list of
words I supplied with the -
Simulated Annealing article (it pro-
vided the best display of the
answer, though). However, when I
ran it with the correct word list, it
didn’t find a solution at all, which
was very bizarre.

To be honest, all of these solu-
tions were excellent. I was very
impressed with their design, code
and approach (if any were perma-
nent US residents, I’d offer them a
job at TurboPower). Deciding the
winner was very difficult, but I said
that I’d award the prize to the fast-
est, and Lars’ solution edged ahead
of Gert’s, but only just. Well done

all entrants, and especially Lars.
His word list:

“XYZZY” =  E6 E7 F7 E8 F8
“TO”    =  L3 K4
“LAZY”  =  D6 B7 C7 A8
“MICE”  =  K1 K2 L2 K3
“ALL”   =  B4 A5 B5
“SONG”  =  J3 I4 H5 G6
“TWO”   =  G4 H4 G5
“DOG”   =  E1 D2 D3
“GOOD”  =  I5 H6 I6 H7
“FIVE”  =  H3 I3 J4 K5
“THE”   =  K6 J7 L7
“BEST”  =  K7 J8 K8 L8
“THREE” =  A1 B2 A3 B3 C3
“MEN”   =  H2 I2 J2
“LOVER” =  F1 G1 H1 F2 G2

Summary
I hope you’ve enjoyed reading
these questions and answers, and
that you’re left with some snippet
that helps you in your work. I shall
be doing this again in the future,
providing that, of course, you send
me thought-provoking emails or I
introduce some egregious bug.
Next month, a new occasional fea-
ture that I think you’ll like: Applied

Algorithms Alfresco. I get some
emails that say something like this:
‘I want to implement this particu-
lar feature in my application, but I
haven’t a clue how to go about it,
or, despite reading every article
you’ve written, which data struc-
ture or algorithm to use.’ Some of
these answers would fit amongst
others in an article like the one you
are reading now, some of them
would require an article of their
very own. So, next month, the first
applied algorithm article. See you
then!

Julian Bucknall can be reached at
julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© Julian M Bucknall, 2000


	Issue 57 (May 2000)
	Issue 44 (April 1999)
	Issue 46 (June 1999)
	Issue 46 (June 1999)
	Issue 54 (February 2000)
	Issue 42 (February 1999)
	Issue 51 (November 1999)
	Issue 50 (October 1999)
	On Compiler Options
	Issue 53 (January 2000)
	Summary

